Prospective Data Collection – Provider Perspective

Zoher Ghogawala, M.D.
Chairman and Associate Professor
Department of Neurosurgery
Lahey Clinic
Tufts University School of Medicine

Science of Clinical Practice
American Association of Neurological Surgeons Meeting
New Orleans, Louisiana, April 27, 2013
Disclosure

No Commercial Conflicts of Interest
Criticism/ Pressure from Government and Payers

Utilization of complex spinal fusion in the US increased 15 fold from 2002-2007.
- Deyo et al, JAMA 2010;303:1259-1265

The Cost of Spine Care in the US is now over 86 billion dollars/ year with over 300,000 spinal fusions performed annually.

Cost of Cancer in the US = 89 billion dollars/ year.
Where is the Evidence?

Lumbar Fusion Guidelines – Grade I Lumbar Spondylolisthesis with Spinal Stenosis

“Guidelines. There is insufficient evidence available to support a treatment guideline.”

“The medical evidence regarding the use of pedicle screw fixation in this patient population is rated as Class III and is inconsistent”

Payers might limit access

Several Third Party Payers (e.g. Blue Cross – Blue Shield of North Carolina) have begun (January, 2011) to limit patient access to lumbar spinal fusion citing a lack of evidence to support this treatment for patients with lumbar degenerative diseases.
Providers want data

Patients think they have access to data from the Internet and other sources
All stakeholders need data

Access to Quality Data and Cost Preference Based on Value
Large administrative databases (e.g. National Inpatient Sample) containing vast amounts of patient data have increased our ability study quality with retrospective approaches.

**Strength**: Large numbers of patients from actual practice

**Weakness**:

1) Lack of outcomes detail  
   *(i.e. no patient reported outcomes)*

2) Charges as a surrogate for costs
How do we as providers generate outcome data from actual clinical practice?

Types of Studies – RCT versus Registries

RCT represents the ‘gold standard’

Limitations of RCTs (e.g. lack of equipoise, cross-overs, limited generalizability, etc.) have reduced enthusiasm for conducting more RCTs in surgery

Registries may represent a useful alternative when data is needed particularly on the value of treatments in actual practice
Meaningful Cost Data

• When your hospital says BMP is too expensive, for example, providers want local data comparing fusion with and without BMP

• When your hospital says you can not use a particular implant because it is too costly, providers need local data on the comparative costs and effectiveness of various options
Shared Decision Making

Providers and Patients could review actual data regarding a condition and make decisions together about treatment options.
SLIP STUDY Actuarial Re-Ops

Fusion+Lami

Lami alone

P=0.04
Comparative Outcomes: Fusion versus Lami

Oswestry
(Lower Score is Better)
P=0.071

PCS (SF36)
(Higher score is Better)
P=0.035
Shared Decision Making: Grade I Degenerative Spondylolisthesis

To Fuse or not to Fuse

- **Work:**
  12 weeks vs 2 weeks

- **Complications:**
  12% vs 5%

- **Re-operation (5 year):**
  13% vs 33%

- **Cost**
  $85K vs $20K
The NPA is working on registry efforts to include the ‘essential’ elements to measure outcome and document effectiveness.
The Science of Community Practice?

Examples:

**Neuropoint SD Study** –
Lumbar discectomy and Single-level fusion for grade I spondylolisthesis

**N2QOD** –
Comprehensive risk-adjusted outcome assessment for lumbar spinal surgery in US

**Proposed N2QOD Essential** – 25 data elements – focus upon ICD and CPT coding and EQ-5D
Principal Investigators

Zoher Ghogawala, MD
Daniel K. Resnick, MD
Anthony L. Asher, MD
Christopher I. Shaffrey MD

Site Investigators

Neil Malhotra MD
R. John Hurlbert MD
Subu N. Magge MD
Joseph S. Cheng MD
Michael G. Kaiser MD
Khalid M. Abbed MD

Steven J. Dante MD
Andrea F. Douglas MD
Praveen V. Mummaneni MD
Justin S. Smith MD
Robert F. Heary MD
Daniel M. Sciubba MD

James Dziura, PhD (Biostatistician)
Clinical Example: Lumbar Disc Herniation

- Lumbar Disc Herniation is the most frequent indication for spinal surgery in the US
- 15-fold regional variation in the US in utilization of surgery for herniated lumbar disc
- RCT - High degree of cross-over in the SPORT trial limited ability to compare surgical and non-surgical arms
Clinical Example: Grade I Degenerative Spondylolisthesis

- Degenerative lumbar spinal stenosis - most frequent indication for spinal surgery in patients >65
- 40% of patients have a degenerative slip
- Lack of high quality validated outcomes data regarding utility of different surgical approaches
Objective - Primary Aims

1) To establish a multi-center cooperative group that demonstrates 80% compliance in collecting 1-year outcomes data

2) To demonstrate the clinical effectiveness (SF-36 and ODI) of 2 common lower back procedures: **lumbar discectomy** & **single level fusion**
The Approach

To collect 200 unselected surgical patients (20 pts/site) from 10-13 sites over 1 year with either:

• Symptomatic lumbar disc herniation
  or
• Symptomatic lumbar spondylolisthesis
Eligibility

Inclusion:

Age 18-80 years
- Lumbar Disc – 6 weeks
- Lumbar Stenosis with Spondylolisthesis – 3 months

Exclusion:

- Previous Surgery
- Significant (3/5) motor weakness
- Cancer, infection, or fracture
- Pregnancy
Outcomes Assessment

Health-related QOL – SF-36
Disease-specific outcome: ODI and VAS

Pre-operatively and 30 days, and 3, 6, and 12 months post-operatively
What is Success?

- **Feasibility**: At least 80% follow-up at 1 year (primary outcome measure – SF36)

- **Effectiveness**: At least a 20 point improvement using SF-36 physical function domain score at 1 year
Operational Matters

Three Investigators Meetings

• Creation of Web-Platform
• Site IRB and Contract Approval
• Budget and Site Responsibilities
• Overall Study Manager
# Funded Study Budget

<table>
<thead>
<tr>
<th>Category</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$ 0</td>
</tr>
<tr>
<td>Patient Care</td>
<td>$ 0</td>
</tr>
<tr>
<td>Site Enrollment</td>
<td>$ 90,000</td>
</tr>
<tr>
<td>SF-36 Licensing Fees</td>
<td>$ 0</td>
</tr>
<tr>
<td>IRB Fees</td>
<td>$ 20,000</td>
</tr>
<tr>
<td>NPA-Web Platform</td>
<td>$ 78,000</td>
</tr>
<tr>
<td>Biostatistics (Yale)</td>
<td>$ 12,000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>$ 200,000</strong></td>
</tr>
</tbody>
</table>
Two Major Flaws

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$ 0</td>
</tr>
<tr>
<td>Patient Care</td>
<td>$ 0</td>
</tr>
<tr>
<td>Site Enrollment</td>
<td>$ 90,000</td>
</tr>
<tr>
<td>SF-36 Licensing Fees</td>
<td>$ 0</td>
</tr>
<tr>
<td>IRB Fees</td>
<td>$ 20,000</td>
</tr>
<tr>
<td>NPA-Web Platform</td>
<td>$ 78,000</td>
</tr>
<tr>
<td>Biostatistics (Yale)</td>
<td>$ 12,000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>$ 200,000</strong></td>
</tr>
</tbody>
</table>
Site Responsibilities

• Screen patients for enrollment
• Collect and enter baseline and operative data
• Force a change in culture – get both doctors and patients to get patient-reported outcome assessments completed on time
• IRB submission - up to $2,500
• Patient Reimbursement $100/ pt – $25 gift cards – 4 post-op visits
• Enroll 20 patients over 1 year
# Site Costs

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$12,000</td>
</tr>
<tr>
<td>Patient Care</td>
<td>$0</td>
</tr>
<tr>
<td>Administrative Costs</td>
<td>$6,000</td>
</tr>
<tr>
<td>Patient Reimbursement</td>
<td>$2,000</td>
</tr>
<tr>
<td>IRB Fees</td>
<td>$2,500</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>$22,500</strong></td>
</tr>
</tbody>
</table>
Patient Enrollment (198 patients enrolled)
80% Compliance
Quality Assessment

New Patient
Find Patient
Change Password

Baseline - Enrolled
  Incomplete: 3
  Complete: 9

Baseline - Screened
  Incomplete: 0
  Complete: 0

30-Day Follow-Up
  Incomplete: 0
  Complete: 6

3 Month Follow-Up
  Incomplete: 1
  Complete: 3

6 Month Follow-Up
  Incomplete: 0
  Complete: 0

1 Year Follow-Up
  Incomplete: 0
  Complete: 0

Surgeon Output: Lumbar Fusion

Mean Oswestry Score
Complications – 30 days

Total = 12 complications – 6.1%

Disc Herniation & Grade I Spondy

4 wound infections
2 new post-op neurological deficits
4 re-operations (disc re-herniation)
1 symptomatic CSF leak
1 non-fatal cardiac arrest
Re-operations – 1 year

Total = 11 re-operations – 5.6%

Ten re-operations were in the disc herniation cohort. One in the spondylolisthesis cohort. All were at the index level.
## Return to Work

<table>
<thead>
<tr>
<th>Pre-op Work Status</th>
<th>Total Group N=199</th>
<th>Disc N=153</th>
<th>Spondy N=46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td>110</td>
<td>94</td>
<td>16</td>
</tr>
<tr>
<td>Part Time</td>
<td>19</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>No Work/Looking</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>No Work/Able</td>
<td>26</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Disabled</td>
<td>41</td>
<td>30</td>
<td>11</td>
</tr>
</tbody>
</table>
>80% of Patients who were working pre-op
Return to Work by 1 Year

N= 100
N= 90
N= 83
N= 22
N= 6
N= 20
N= 23
N= 22

% Disc
Spondy

Return to Work

30 Days 3 Mos 6 Mos 1 Year

Disc
Spondy
Return to Work

1 year: >80% of entire population is working
Return to Work

Different population – 50% working at baseline
Lumbar Discectomy for Disc Herniation is Effective
Lumbar Fusion for Grade I Spondylolisthesis is Effective
Improvement in SF-36 (P<0.001; both groups)
Reduction in ODI (P<0.001; both groups)
# QALYs 1-year Analysis

<table>
<thead>
<tr>
<th></th>
<th>Disc N=153</th>
<th>Spondy N=46</th>
</tr>
</thead>
<tbody>
<tr>
<td>QALYs Gained</td>
<td>.256</td>
<td>.208</td>
</tr>
<tr>
<td>Cost/QALY</td>
<td>$79,051</td>
<td>$153,548</td>
</tr>
</tbody>
</table>
Were we successful?

- **Feasibility**: At least 80% follow-up at 1 year (primary outcome measure – SF36)

- **Effectiveness**: At least a 20 point improvement using SF-36 physical function domain score at 1 year
## Actual Study Budget

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$186,000</td>
</tr>
<tr>
<td>Patient Care</td>
<td>$0</td>
</tr>
<tr>
<td>Site Enrollment</td>
<td>$72,150</td>
</tr>
<tr>
<td>SF-36 Licensing Fees</td>
<td>$0</td>
</tr>
<tr>
<td>IRB Fees</td>
<td>$21,800</td>
</tr>
<tr>
<td>NPA-Web Platform</td>
<td>$89,564</td>
</tr>
<tr>
<td>Biostatistics (Yale)</td>
<td>$798</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>$370,312</strong></td>
</tr>
</tbody>
</table>
The Science of Community Practice

We must recognize that collection of patient-reported outcome will represent a culture change for neurosurgical practice.

But, in order to do this, we must minimize impact of clinical work flow.

Ultimately, we need strategies to measure outcome without a research coordinator full-time equivalency (FTE).
So, How do we do this?

Proposed N2QOD Essential – 25 data elements – focus upon ICD and CPT coding and EQ-5D (QALYs)

Leverage EMR technology for data capture and standardization
Essential Elements

Demographics: Age, Gender, Date of Surgery

Co-Morbidities: CAD, Diabetes, Smoking Status, BMI

Diagnosis: ICD-9 code – e.g. 756.12 (spondylolisthesis)

Treatment: CPT code – 22633 (TLIF), 63047 (decompression)

Outcome: ODI, EQ-5D, LOS, Return to Work
One recent innovative strategy has used natural language processing to search EMRs for complications.

In a study of 2974 patients at VA medical centers – natural language processing had greater sensitivity and lower specificity than discharge coding for the identification of complications following surgery.

- Murff et al, JAMA, 2011
Evaluating Safety

- Automated safety surveillance of National Cardiovascular CathPCI Clinical Registry April 2003-2007 in Massachusetts

- 74,427 consecutive coronary procedures 2 implantable devices (Taxus Express drug eluting stent and Angio-Seal STS vascular closure device) had higher than expected complication rates (MI and other vascular complications)

- Resnic et al, JAMA, 2010
Observational Medical Outcomes Partnership (OMOP)

- A public-private partnership launched by the Foundation for the National Institutes of Health in partnership with PhRMA and the FDA

- Aim is to identify the most reliable methods for analyzing huge volumes of data drawn from heterogeneous sources
  - What can medical researchers learn from accessing new health care databases?
  - Could single approach be applied to multiple diseases?

http://omop.fnih.org/
Current Challenges

- Different EHR Vendors classify and store date differently
- EPIC and Cerner are dominant and so that might represent an opportunity for standardizing EHR extraction strategies
- No matter what strategy is used, capturing health care and outcomes data will need to be accurate and verifiable
Conclusions

1. Providers want risk-adjusted outcome data with reliable cost data
2. Providers need strategies to collect these data to participate in national registries
3. Ultimately, work flow can not be disrupted and data must be extracted from the EHR
4. Patient-reported outcomes assessment must become part of our neurosurgical culture
Providers and Patients can use data to improve decision making

Useful practice data can improve the patient-doctor relationship and build trust
Thank You